• <tr id='Xy9tlx'><strong id='Xy9tlx'></strong><small id='Xy9tlx'></small><button id='Xy9tlx'></button><li id='Xy9tlx'><noscript id='Xy9tlx'><big id='Xy9tlx'></big><dt id='Xy9tlx'></dt></noscript></li></tr><ol id='Xy9tlx'><option id='Xy9tlx'><table id='Xy9tlx'><blockquote id='Xy9tlx'><tbody id='Xy9tlx'></tbody></blockquote></table></option></ol><u id='Xy9tlx'></u><kbd id='Xy9tlx'><kbd id='Xy9tlx'></kbd></kbd>

    <code id='Xy9tlx'><strong id='Xy9tlx'></strong></code>

    <fieldset id='Xy9tlx'></fieldset>
          <span id='Xy9tlx'></span>

              <ins id='Xy9tlx'></ins>
              <acronym id='Xy9tlx'><em id='Xy9tlx'></em><td id='Xy9tlx'><div id='Xy9tlx'></div></td></acronym><address id='Xy9tlx'><big id='Xy9tlx'><big id='Xy9tlx'></big><legend id='Xy9tlx'></legend></big></address>

              <i id='Xy9tlx'><div id='Xy9tlx'><ins id='Xy9tlx'></ins></div></i>
              <i id='Xy9tlx'></i>
            1. <dl id='Xy9tlx'></dl>
              1. <blockquote id='Xy9tlx'><q id='Xy9tlx'><noscript id='Xy9tlx'></noscript><dt id='Xy9tlx'></dt></q></blockquote><noframes id='Xy9tlx'><i id='Xy9tlx'></i>

                1月7日 宋梓霞教授學術報告(數學與統計學院)


                報 告 人: 宋梓霞 教授

                報告題目:Ramsey numbers of cycles under Gallai colorings





                       宋梓霞博士是美國中佛羅裏達大學(University of Central Florida)數學系教授,博士生導師。主要研究領域為圖論。宋梓霞◤博士於2000-2004年在美國佐治亞理工大學(Georgia Institute of Technology)獲算法,組合,優化(Algorithm, Combinatorics and Optimization)博士學位,2004-2005年在美國俄亥俄州立大學(The Ohio State University)數學系從事博士後研究。2005年授聘於美國中佛羅裏達大學數學系。獲得2009-2011美國NSA科研基金,是美國自然科學基金(NSF)的基金評委。2013年獲校優秀教師獎。


                       For a graph $H$ and an integer $k\geq1$, the $k$-color Ramsey number $R_{k}(H)$ is the least integer $N$ such that every $k$-coloring of the edges of the complete graph $K_{N}$ contains a monochromatic copy of $H$. Let $C_{m}$ denote the cycle on $m\geq4$ vertices. For odd cycle, Bondy and Erd\H{o}s in 1973 conjectured that for all $k\geq1$ and $n\geq2$, $R_{k}(C_{2n+1})=n2^{k}+1$.Recently, this conjecture has been verified to be true for all fixed $k$ and all $n$ sufficiently large by Jenssen and Skokan; and false for all fixed $n$ and all $k$ sufficiently large by Day and Johnson. Even cycles behave rather differently in this context. Little is known about the behavior of $R_{k}(C_{2n})$ is general. In this talk we will present our recent results on Ramsey numbers of cycles under Gallai coloring, where a Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles. We also completely determine the Ramsey number of even cycles under Gallai coloring.

                Joint work with Dylan Bruce, Christian Bosse, Yaojun Chen and Fangfang Zhang.